
J .  Fluid Mech. (1995). uol. 294, pp .  181-207 
Copyright 0 1995 Cambridge University Press 

181 

Air entrapment by a falling water mass 

By HASAN N. 0 6 U Z '  A N D R E A  PROSPERETTI' 
AND ALI R. KOLAIN12 

Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, 
MD 21218, USA 

National Center for Physical Acoustics, University of Mississippi, Oxford, MS 38677, USA 

(Received 13 September 1994 and in revised form 12 January 1995) 

The impact of a nearly cylindrical water mass on a water surface is studied both 
experimentally and theoretically. The experiments consist of the rapid release of water 
from the bottom of a cylindrical container suspended above a large water tank and of 
the recording of the free-surface shape of the resulting crater with a high-speed camera. 
A bubble with a diameter of about twice that of the initial cylinder remains entrapped 
at the bottom of the crater when the aspect ratio and the energy of the falling water 
mass are sufficiently large. Many of the salient features of the phenomenon are 
explained on the basis of simple physical arguments. Boundary-integral potential-flow 
simulations of the process are also described. These numerical results are in fair to 
good agreement with the observations. 

1. Introduction 
The dull sound accompanying the falling of a mass of water onto a water surface is 

very commonly experienced. It was speculated by Minnaert (1933) and proven by 
Franz (1959) that this sound is caused by the oscillations of air bubbles, and it is the 
twin aspects of noise generation and air entrainment that motivate more than a passing 
interest in this process. On the acoustic side, it has been shown in recent years that air 
entrainment is the dominant contributor to oceanic ambient noise over a broad 
frequency range extending from a few tens of Hz to hundreds of kHz (Prosperetti 1988; 
Medwin & Beaky 1989; Medwin & Daniel 1990; Farmer & Ding 1992; Lamarre & 
Melville 1994; Loewen & Melville 1994; Hollett 1994; Ding & Farmer 1994; Kolaini 
& Crum 1994). 

Depending on conditions (e.g. near the coast, or at very high sea states) an important 
fraction of the low-frequency component of this noise is directly due to waves breaking 
in the plunging mode and to the impact of splashes. In industry, air entrainment is 
actively pursued in certain water aeration systems and gas-liquid chemical reactors. 
Ship bow waves falling back onto the water surface also entrain bubbles that, in 
addition to causing noise, can be transported to the propeller region and act as nuclei 
for undesirable cavitation events. The process can also be encountered during the 
initial transient of an otherwise steady or quasi-steady flow such as a jet falling onto 
a liquid. Even when no air is entrained in the steady state, some bubbles may be 
generated when the jet first contacts the liquid surface. 

Several recent papers have been devoted to the related process of air entrainment by 
impacting drops (Pumphrey & Crum 1988, 1990; Pumphrey, Crum & Bjrarnra 1989; 
Pumphrey & Elmore 1990; Longuet-Higgins 1990; Oguz & Prosperetti 1989, 1990, 
1991; Prosperetti & Oguz 1993; Chahine et al. 1991; Stroud & Marston 1993). In the 
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FIGURE 1. Sketch of the experimental set-up with the Plexiglas tank. The tank dimensions are 
2.1 m x 2.1 m x 1.8 m (width, length, depth). 

present theoretical and experimental study we consider instead liquid masses - 
‘splashes’ - so large that the motion is dominated by gravity and inertia while surface 
tension is negligible. The experiment simply consists of releasing cylindrical volumes of 
water from less than 0.1 to nearly 11 litres onto the quiescent surface of a water tank. As 
a consequence of the impact the free surface forms a crater that grows, penetrates 
downward, and finally pinches off entraining a large gas bubble. It is at this point that 
a strong pulse of low-frequency sound is emitted. While the quantitative aspects of this 
study only refer to the normal impact of cylindrical water masses, it may be expected 
that this general sequence of events applies quite generally to sufficiently energetic 
impacts. 

The acoustic aspects of this work have already been reported (Kolaini et al. 1993). 
Here, we focus on the fluid mechanics. After a brief review of the experiment, we 
present an analysis of the process based on simple physical considerations. The paper 
concludes with the description of the results of numerical simulations by an inviscid 
boundary-integral method. 

The suggestion for this experiment was originally made by Longuet-Higgins (1989) 
to simulate in the laboratory the acoustic emission from a breaking wave. 
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2. Experimental set-up 
A detailed description of the experimental set-up can be found in Kolaini et al. 

(1993). Here we present a brief summary. 
The experiments were carried out in a laboratory tank with dimensions of 

2.1 m x 2.1 m x 1.8 m (width, length, and height) filled with tap water and maintained 
at ambient temperature (23 "C). Cylindrical containers suspended 40-355 mm above 
the tank and restrained from lateral movement were used to release the water (figure 
1). The containers had diameters 30-183mm and were filled with tap water up to 
heights 50450mm. A tightly stretched thin rubber sheet secured by a rubber band 
closed the container's bottom. To initiate the experiment, thin sharpened rods 
suspended a few inches above the membrane were released and ruptured it. This caused 
the water to fall onto the tank's still-water surface, producing a cavity the evolution of 
which was recorded with a Kodak Ekta-Pro high-speed video camera operating at a 
rate of 1000 frames per second and fitted with a Nikon 28-mm lens. The camera was 
directed perpendicular to the cavity axis as viewed through the Plexiglas wall. The 
sound produced in the course of the process was also recorded synchronously with the 
video for later processing. A Photec IV rotating-prism motion picture camera 
operating at  500 frames per second was also used with a wide variety of lenses and 
multipliers to capture images both of the free falling jet and of the evolution of the 
entrained cavity. 

The characteristic dimensions of the crater and of the entrained bubble were 
measured from the video or film images. In a few cases, the entrained air was captured 
by means of a device described in Kolaini et al. (1993) and its volume measured 
directly. In general, good agreement between the bubble volume obtained from the 
images and that measured directly was found. 

3. Experimental results 
Figure 2 shows frames from a high-speed movie sequence of the rupture of the 

rubber membrane and the release of the liquid slug. Here the radius of the container 
is 54 mm, the depth of the water in the container is 0.45 m, and the suspension height 
0.15 m from the tank water surface. The time elapsed between the first and the last 
frame shown is 262 ms. The tip of the rods that have just pierced the membrane are 
visible in the third frame. Full rupture of the membrane is completed in less than 1 ms. 
The liquid falls as a cylinder only approximately, with several nearly axisymmetric 
surface disturbances of various wavelengths clearly visible from frame (vi) onward. The 
relatively long-wavelength wave near the bottom is probably due to the relaxing of the 
initial shape of the liquid mass. The shorter waves above originate as the liquid leaves 
the tube but are also affected by the impact with the underlying undisturbed liquid. The 
lower surface of the falling water appears very disturbed. The last frame shows that the 
upper surface of the water in the container does not remain flat even though horizontal 
movement of the container is restrained. The nature of this apparent instability is not 
immediately clear. In particular, the original photos clearly show that the container is 
vertical, so that it does not appear plausible that it be due to a misalignment with 
gravity. 

In spite of the presence of surface waves, the falling liquid mass maintains essentially 
its initial shape during the impact, a fact that may at first sight be surprising in view 
of the stagnation point that must exist somewhere near its base. This feature can be 
explained by noting that, since the aspect ratio is rather large and the pressure at the 
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FIGURE 2 (ixviii). For caption see facing page. 
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FIGURE 2. High-speed move sequence (500 f.p.s.) of the rupture of the rubber membrane and the 
release and fall of the liquid slug. Container radius r = 54 mm, water depth h = 0.45 m, suspension 
height d = 0.15 m. Times elapsed after the first frame are 2, 30, 80, 120, 140, 160, 180, 200, 220,242 
and 262 ms. 

surface constant (atmospheric), axial pressure gradients in the falling liquid are not 
easily generated. 

Figure 3 shows a view in the water of another event obtained in the same 
experimental conditions. A bubble is entrapped by the pinching off of the large air 
crater that is generated by the impact. The pinch-off occurs because of a convergence 
of the liquid on the axis of symmetry. Since the convergence is only approximate, some 
air remains entrapped along the axis with the appearance of a ‘stem’ connecting the 
large cavity to the tank free surface. The sudden impact of the radial closure creates 
a high-pressure region that deflects the liquid partly upward and partly downward. The 
upward jet is the familiar one that one sees when an object (e.g. a stone) is thrown into 
water. The downward-directed jet hits the bottom of the bubble much in the same way 
as the original jet hit the undisturbed water surface. A ‘ third-generation’ jet formed by 
the same mechanism is sometimes observed. This ‘cascading’ effect has the consequence 
of entraining air at greater depths than one would otherwise expect. Although not clear 
from this particular sequence, the cavity surface is quite smooth throughout the growth 
period, but roughens considerably with short-scale capillary waves completely covering 
it at the moment of pinch-off. Figure 4 is a closeup view taken in the same experimental 
conditions. The liquid jet inside the bubble is visible in the first frame. The sequence 
shown in this figure is typical of impacts with sufficient initial energy. When the 
distance of free fall is lower or the water mass smaller the crater is less pronounced and 
a large number of small bubbles (possibly together with a bigger bubble at the centre) 
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FIGURE 3. The air entrapment process in the same experimental conditions as in figure 2 as recorded 
by an underwater video camera at normal speed. The last three frames show the downward 
penetration of the secondary jet caused by pinch-off into the lower cavity surface. Another bubble will 
be formed by the impact of this secondary jet. The frames shown are approximately 150,200, 255, 
340,400 and 600 ms after release of the liquid. These images were taken in the course of an experiment 
in Puget Sound with sea water. 

is entrained. An example of this type is given below in figure 19. Until then, we shall 
only deal with energetic impacts. 

This air-entrainment process is in some respects similar to the mechanics of bubble 
entrainment by impacting millimetre-size drops (see e.g. Prosperetti & Oguz 1993). 
This remark is rather interesting in view of the large differences in the magnitude of 
surface-tension forces that give a Weber number of the order of lo2 for the drop cases, 
and of the order of lo3 here. Some comments on this point will be found at the end of 
§4* 

The general shape of the air boundary at the moment of bubble detachment as 
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FIGURE 4. Another example of bubble entrapment from closer range for the same experimental 
conditions of figure 3. The entering water column is visible through the cavity surface in the first 
frame. Filming rate is 500 f.p.s. The times are 230, 290, 295 and 297 ms after release of the liquid. 

revealed by the visualization studies is shown in figure 5 ,  which also defines some 
nomenclature. The basic geometric features on which we focus in the following are: the 
depth H of the lowest point on the bubble surface; the depth D of the pinch-off point 
below the undisturbed free surface ; the bubble equivalent spherical radius R,. 

Experimentally the independent variables are (figure 5)  the radius r of the cylindrical 
container, the depth h of the water in the container, and the suspension height d of the 
bottom of the container above the undisturbed water surface. These parameters were 
varied in the range 50 < h < 450 mm, 15 < r 6 91.5 mm, 40 < d 6 355 mm. The 
corresponding impact velocities on the basis of free fall neglecting air resistance range 
from 0.88 to 2.64 m s-'. 
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FIGURE 5. Definition of the geometric parameters of the problem. Note in particular that R, is 
the equivalent spherical radius of the cavity. 

4. Physical considerations 
Before being released, the mass A4 of water has the potential energy Mg(d+:h) where 

g is the acceleration due to gravity. If this initial potential energy is converted to kinetic 
energy, +MV, one deduces the characteristic velocity 

The Froude, Weber, and Reynolds numbers defined in terms of r and U are 
U = [2g(d+ih)]''2. (1) 

Fr = "( r 1 +2$, 

We = "rh( U 1 +2$ ,  Re = t [ g (  1 +2:)r, (3) 

where u, p, and v denote surface tension, density, and kinematic viscosity. In all the 
cases investigated experimentally the Reynolds and Weber numbers are large enough 
that viscous and surface-tension effects are negligible. (As will be seen later in $6 this 
statement must be qualified. It is however sufficiently accurate for the present 
purposes.) Hence, aside from g ,  each experiment can be considered as fully 
characterized by the three lengths r, h, and d or, in dimensionless form, by the two 
parameters h / r  and Fr. A map of this parameter space showing the experimental points 
is shown in figure 6, where the straight lines are lines of constant d/h. It also follows 
that any measured quantities 1 or V with dimensions of length or velocity may be 
written as 

1 V 
- r = 4 (:, Fr), = I$(:, Fr). (4) 
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FIGURE 6. Parameter space with the experimental points. The d / h  = const. lines are, in ascending 
order, for d/h = 0 (solid line), 0.5, 1, 1.5 and 2. 

Physical arguments are needed to simplify further these general expressions. 
Let us first consider the speed at which the cavity surface progresses downward after 

the initial impact (figure 3). To the extent that gravity effects can be neglected in the 
evolution of the free surface (which presupposes a high Froude number, or high-energy 
impacts), this velocity V is readily shown to equal half the impact velocity (Birkhoff & 
Zarantonello 1957, p. 16; Oguz, Lezzi & Prosperetti 1992). Indeed, in a frame of 
reference where the bottom of the crater is stationary, an observer sees a liquid column, 
or jet (see e.g. figure 14), impinging with a velocity U -  V while the liquid ahead of the 
jet is moving toward the jet with a velocity V. This must also be the velocity along the 
outer surface of the cavity far away from the impact point, since the flow velocity there 
must equal the undisturbed incoming velocity V. However, since the pressure in the 
cavity is uniform, Bernoulli’s theorem requires that the magnitude of the velocity along 
the cavity surface be constant, i.e. V = U -  V, from which V = iU. This prediction 
agrees very well with data on hyper-velocity impacts seen in collapsing bubbles and 
underwater explosion bubbles. Its accuracy in the present situation can be judged from 
figure 7 where the dotted lines are from measurements and the dashed line from the 
calculation to be described in $6. It is seen that both experiment and numerical 
modelling agree very well with this estimate in spite of the unsteady nature of the actual 
flow, gravity, and the presence of boundaries. 

For sufficiently energetic impacts we can also estimate the width of the cylindrical air 
cavity surrounding the jet (see e.g. figure 14). For this purpose we note that, in a 
reference frame in which the bottom of the crater is stationary (figure 8), there is an 
analogy with the flow established by a source (the incoming liquid) immersed in a 
uniform flow (the pool liquid in the moving frame). The situation is sketched in figure 
8 in which part (a)  shows the jet flow and part (b) the flow produced by a source in a 
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FIGURE 7. Depth of the cavity 
calculations of $6 (dash-and-dot 
to )U. The experimental points 
h = 40, d = 15 cm (circles). 

front versus time according to experiment (dotted lines) and the 
: line). The solid line is the simple estimate from a front velocity equal 
are for r = 5.4 cm, h = 30 cm, d = 15 cm (squares) and r = 5.4 cm, 

uniform stream with velocity V = aU. This is precisely the situation in the well-known 
theory of Rankine bodies in potential flow. The velocity potential for such a flow is 

( 5 )  

where Q is the source strength, V the free-stream velocity, and r, 8 spherical 
coordinates centred at the source. For this flow the locus of all points with vanishing 
axial velocity is 

(6) 

To determine a value of Q giving rise to a flow that approximates the jet entry problem, 
we require that the locus (6) contain a point with radial velocity tU, so that 

(7) 

Physically, we have required that the lowest point of the cavity surface (along all of 
which, from Bernoulli's theorem, the velocity equals tU) match in position and velocity 
the corresponding point of the source flow. The simultaneous equations (6) and (7) 
imply that tan8 = - 1 and that 

The radius S of the Rankine body corresponding to this source flow is 

$ = Q/4xr + Vrcos 8, 

V = (Q/47cr2) cos 8. 

$U = - (Q/47cr2) sin 8. 

Q = 4nr2V. (8) 

(9) S = ( Q / T ~ V ) ' / ~  = 2r. 
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FIGURE 8. (a) Sketch of the water entry process in a frame of reference in which the cavity front 
is stationary. (b) Comparison with a Rankine half-body flow. Here V = +U. 

The jet liquid is deflected at the stagnation point and ‘coats’ the inner side of the 
Rankine body flow, far from the turning point, at the same speed tU, as follows from 
the Bernoulli equation. Conservation of mass then requires that +Un(Se - R:) = fUnr2 
from which 

(10) R ,  x (s2-rz)1/2 = 4 3 r .  

Experimental data of R,/r  versus h/r  for several experiments are shown in figure 9. 
Here R ,  is measured directly from the films at the moment of pinch-off. In a few cases 
the width of the crater was monitored during its growth and it was found to remain 
constant and equal to its value at pinch-off as would be expected on the basis of the 
previous considerations. In figure 9 the radius of each circle showing a data point is 
proportional to the value of the Froude number. More precisely, Fr equal 500 times the 
circle radius measured on the vertical scale of the figure. The smallest circle 
corresponds to Fr = 9.81, and the largest one to Fr = 45.5. It can be seen that, for 
sufficiently energetic impacts (large h/r  and Fr), which are the only ones for which the 
preceding argument is applicable, R,/r is indeed approximately constant, although 
the value 2 rather than 4 3  seems a better fit to the data. Similar results are found in 
the numerical calculations described in 56. For shorter jets the crater is closer to 
hemispherical rather than cylindrical as in the case of the drop impacts studied in Oguz 
& Prosperetti (1991) and the quantity R ,  is not well defined and is difficult to measure. 
This explains the scatter in the data in this region. 

Let us now return to the maximum depth of the crater. Here we must consider 
several cases, depending on the jet length, as shown in figure 10. 
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FIGURE 9. Measured data for the dimensionless cavity width R,/r versus h/r  (circles). The Froude 
number equals the radius of the circles measured on the vertical scale multiplied by 500. The smallest 
circles are for Fr = 9.81 and the largest ones for Fr = 45.45. 

t=17.59 1 

FIGURE 10. Numerical examples (according to the numerical computations of 46) of the three regimes 
for bubble entrapment: (i) h / r  = co, d / r  = 33.98; (ii) h / r  = 13.28, d/r = 2.78, and (iii) h / r  = 3.70, 
d / r  = 2.78. The dashed line in (ii) indicates the cavity shape at the moment of deepest penetration. 

(i) For long jets, the jet 'tail' is above the pinch-off point and the cavity closes 
against the jet surface (figure 1Oi). It will be seen from figure 13 below that very few 
of the present experiments fall in this range. A computational example is shown in 
figure 1 of Oguz et al. (1992) and in figure lO(i). Here h/r  = a, d/r = 33.98 and 
(2gd)'/'t/r = 15.3. 

(ii) As the jet gets shorter, at the moment the cavity closes the jet 'tail' is still 
above the cavity bottom, but below the pinch-off point (figure lOii, for h/r  = 13.28, 
d / r  = 2.78) at Ut / r  = 17.60; 

(iii) For even shorter jets, the jet has completely disappeared below the cavity 
bottom by the time pinch-off occurs and, actually, the bottom liquid has already 
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FIGURE 11. Observed closure time of the cavity divided by the estimate (14) for different h / r  and 
Fr. Scaled as described for figure 9, the smallest circles are for Fr = 6.8 and the largest ones for 
Fr = 63.66. 

started to move upward (figure lOiii, for h / r  = 3.70, d / r  = 2.78, Ut/r  = 10.86; 
the dashed line here is the crater shape at the moment of maximum depth where 
Ut / r  = 10.38). 

To estimate the time of cavity closing in regimes (i) and (ii) we use the following 
simple conceptual model. Consider a horizontal layer of liquid at a depth z below the 
undisturbed free surface. At a time of the order of z / ( t U )  after the initial contact of the 
impacting liquid, this layer is reached by the advancing crater that creates a hole of 
radius R, % 2r. After its formation the hole starts collapsing radially inward and we 
assume that this collapse process for the layer at z proceeds independently from that 
at other depths. Since the collapse itself is driven by the hydrostatic pressure difference 
between the liquid and the cavity, it may be assumed to occur with a characteristic 
velocity (gz)’l2 so that it will be completed in a time of the order of R,/(g~)l’~. The hole 
at depth t will have completely collapsed therefore after a time 

22 R, 
y+P(g,)llz 

from the initial impact, where the constant /3 is expected to be of order 1. The moment 
t ,  at which the air cavity first closes, or pinches off, can be found by looking for the 
minimum of this function which occurs for z = D,  given by 

and is 
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In deriving these results R,/r  has been considered a constant. In regime (i), since part 
of the cavity's mouth is occupied by the jet, one might expect a somewhat shorter time. 
This effect could be accounted for by a somewhat smaller value of /3, although the 
dependence on this quantity is not strong and it might be difficult to determine 
experimentally. The results obtained upon taking R,/r  = 2 and /3 = 2 in (13), i.e. 

(g/r)'l2tC = 6Fr-'Is, (14) 

are tested against the data in figure 11. This particular value of /3 has been chosen in 
order to have simple round numbers rather on the basis of a formal procedure that 
would have little justification in view of the scatter of the data. In spite of some scatter, 
the prediction (14) is supported by the data. 

The depth H, of the crater formed in regimes (i) and (ii) (i.e. for suiliciently long jets) 
can now be estimated as $3, and is therefore 

It may be noted that H ,  = 30. Figure 12 shows the observed cavity depth divided by 
(15) with R,/r = /3 = 2 as before, i.e. 

H,/r  = 3Fr'I3. (16) 

Here the radius of each circle is proportional to Fr as explained before in connection 
with figure 9. The scaling suggested by (16) seems to be supported for h / r  greater than 
about 6-8. The closing depth 0 cannot be measured reliably from the movies as the 
flow velocities near pinch-off are too large for a proper resolution. 
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FIGURE 13. The solid curve corresponds to the transition between regimes (i) and (ii) of figure 10, the 
dashed curve to the transition between (ii) and (iii). The points indicate the experimental tests 
conducted in this study. The nearly parallel lines are constant& lines corresponding to, in ascending 
order, Fr = 5, 10, 20, 30, 40, 50. 

The jet length h ,  corresponding to the transition between regimes (ii) and (iii) 
must be given by h2-,+ H ,  = Ut,, as the tail of the jet travels the distance in the left- 
hand side with a velocity U. This simply gives 

h,, = H ,  = 3rFr'I8. (17) 

By a similar argument, the jet length corresponding to the transition between regimes 
(i) and (ii) must be given by hl-2 + D = Ut, or 

hl-2 = $Hc = 5rFrlf3. (18) 

Upon using the definition (2) of the Froude number, we find 

where N12 = 5 and N2, = 3. These lines are shown in figure 13 together with points 
marking the cases investigated experimentally. The family of other nearly parallel lines 
in this figure corresponds to fixed values of Fr. Unfortunately the visual resolution was 
too poor to determine to which regime each particular experimental point belonged 
and therefore it is not possible to check the prediction (19) against the data. 

We show in figure 14 the cavity evolution, as computed numerically by the method 
described below, corresponding to a borderline case between regimes 1 and 2. Here 
h1Jr = 40/3 and d / r  = 25/9. It is seen in the next-to-last frame that the cavity is just 
about to close onto the jet tail, so that the prediction is fairly accurate. 
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FIGURE 14. Computed free-surface evolution for h1-Jr = 4013 and dlr  = 2519. These values 
correspond to the transition between regimes (i) and (ii) of figure 10 according to (19). 

We now turn to an estimate of the radius of the detached cavity. The data measured 
from the video images are plotted as a function of h/r  in figure 15, with the size of the 
circles proportional to Fr as before. To estimate the cavity volume for regime (ii), we 
simply subtract the volume of the remaining jet ‘tail’, d ( h  -iUt,) ,  from nR2,(HC - 0) 
to find 

where y is a shape factor of order 1. With the previous values of the constants this 
relation becomes 

The corresponding radius R,  of the entrapped bubble is 

V/ynr3 = 1 l l W 3 - h / r .  (21) 

(22) 

For a given Fr, the minimum of this quantity occurs when the portion of the jet that 

R,/r = [& (1 1 Fr1/3 - h/r)]lI3. 



Air entrapment by a falling water mass 197 

3.0 

2.5 

2.0 

!! 1.5 
r 

1 .o 

0.5 

0 

- ................... 

; 
0 i 

0 0  i 
i 

I I i I 

5 10 15 20 25 30 

hlr 

FIGURE 15. Equivalent spherical radius of the entrapped bubble measured from the high-speed video 
sequences. Scaled as for figure 9, the smallest circles are for Fr = 5.46 and the largest ones for 
Fr = 50. 

has not yet penetrated the crater bottom reaches all the way up to the pinch-off point, 
i.e. for h = hl-2 defined in (18). This minimum value is 

R,/r = (23) 

V / p r 3  = 6Fr’l3. (24) 

and the corresponding volume is 

Since in regime (i) the size of the entrapped cavity is independent of h, these results also 
represent the radius and the volume of the cavities entrapped when h 2 hl-2. 
Conversely, for h = h2-3, we have the maximum radius and volume for a given Froude 
number : 

and the corresponding volume 
R,/r  = (6y)1/3Fr1/9 (25) 

V / p r 3  = 8Fr1l3. (26) 

The measured values of R, shown in figure 15 falling in the parameter range where 
regimes (i) or (ii) are expected to prevail are shown in figure 16 after division by the 
expression on the right-hand side of (22) or (23), as appropriate, with y = +,. An 
acceptable agreement is found. 

The previous estimates of cavity depth and bubble volume are not applicable to 
regime (iii) because here the lower part of the cavity starts collapsing inward before 
pinch-off. In this respect the situation here is reminiscent of the small-drop impact 
studied earlier. As in that case, it is possible to estimate the maximum cavity depth by 
assuming that the initial potential energy is converted to the potential energy of a 
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FIGURE 16. Measured equivalent spherical radii of the entrapped bubbles (from figure 15) divided by 
the predictions (22) or (23), as appropriate for cases falling in regimes (i) or (ii) of figure 10. The 
smallest circles are for Fr = 6.85 and the largest ones for Fr = 45.9. 

cylindrical crater of radius R ,  and depth H p  (Oguz & Prosperetti 1990). In this way 
we find 

H p = J h ( l + $  112 . 

Rc 

This estimate is expected to be applicable for 0 < h < hs3. The observed values of 
cavity depth divided by H p  (with R,/r  = 2) are shown in figure 17. Clearly the scaling 
holds for sufficiently short jets. 

The ratio of the two estimates (15) and (27) is 

This fraction is smaller than 1 for the majority of the cases investigated here. This 
implies that, when the estimate (15) is applicable, only a fraction of the initial potential 
energy is stored in the crater. Aside from relatively small dissipative processes, the 
balance will be found in the residual kinetic energy of the liquid at the moment at which 
the cavity closes, and this energy is responsible for the secondary jet phenomenon 
shown e.g. in the last frame of figure 3. 

In conclusion it is of some interest to contrast the present situation with the impact 
of a liquid drop on a plane liquid surface (Oguz & Prosperetti 1990; Prosperetti & Oguz 
1993). In that case a bubble is only entrapped in a narrow range of the Weber-Froude 
number parameter space. In particular, for entrainment, the drop's Weber number 
must satisfy a bound of the form We < Fr1I4, which is violated substantially in the cases 
considered here. This apparent inconsistency may be explained as follows. As far as the 
receiving liquid is concerned, the falling splash is a source of both mass and 
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FIGURE 17. Measured cavity depths divided by H,, (27), for the cases falling in regime (iii) of 
figure 10. The Froude number ranges between 7.41 and 50. 

momentum. The mass source is omni-directional, and tends to produce a roughly 
hemispherical crater. The momentum source, on the other hand, is directed downward 
and gives rise to a roughly cylindrical cavity. Our experience with numerical 
calculations (some reported below, others in our earlier papers, and others 
unpublished) is that air is entrained only when the momentum-source aspect prevails. 
In the case of a drop, this is ensured by surface tension, which prevents an excessive 
spreading (or splattering) of the drop liquid. This effect becomes weaker in the case of 
larger drops, and this is the origin of the upper bound mentioned before. In the case 
considered here, the momentum-source aspect prevails due to the elongated shape of 
the impacting water mass in the direction of motion. This interpretation is substantiated 
by the fact that, experimentally, air is entrained only for jets with a sufficiently high 
aspect ratio. 

5. Mathematical model 
To proceed further with the analysis of the process at hand we need to resort to 

numerical simulation. We assume that at the initial instant the lower face of the falling 
water mass strikes the quiescent surface of the receiving liquid with the free-fall velocity 
(2gd)'I2. We thus neglect waves over the surface of the jet and other complicating 
factors as a first approximation. Furthermore, in view of the magnitude of the impact 
energy, we also neglect the complex small-scale phenomena occurring when contact is 
established between the impacting mass and the host fluid. For example, a large 
number of small bubbles are entrained as a result of multiple-point contacts between 
the fluids and surface tension processes such as those described in Oguz & Prosperetti 
(1 989). 
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FIGURE 18. For caption see facing page. 

Since initially the column of water is assumed to be in rigid-body motion and the 
tank water to be quiescent, there is no vorticity present in the system just before 
contact. If we neglect the curvature of the lower surface of the falling water, there is 
no discontinuity in tangential velocity across the interface at the time of contact and 
therefore no vorticity is generated there by the contact itself. On the assumption that 
the effect of viscosity is small, we therefore approximate the flow by an incompressible 
potential flow for which the velocity field is given by 

u = Vq4 with V'q4 = 0. (29) 
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FIGURE 18. Comparison between measured (left) and computed (right) cavity shapes for the 
experimental conditions of figure 2, Fr = 13.89, h / r  = 8.33, d / r  = 2.78, r = 54 mm. This case falls in 
regime (ii) of figure 10. 

At the free surface, the pressure is zero. By the use of the Bernoulli integral we then 
obtain 

where d/dt denotes the material derivative and the Froude number Fr is defined by (2). 
Here and in the following we use quantities made dimensionless with the characteristic 
length r and the characteristic velocity U defined by (1). 

We assume axial symmetry, which greatly simplifies the numerical solution. The pool 
liquid is infinite and initially occupies the region z < 0. To avoid regions of sharp 
curvature, initially the top of the falling liquid mass is rounded to a hemisphere with 
radius r as shown in the first frame of figure 14. The height h is adjusted so that the mass 
of water above the free surface equals the water mass in the experiment. At t = 0 the 
surface z = 0 of the tank water, being at rest, is assigned zero potential. The velocity 
potential at the surface of the falling liquid is set to - z / (  1 + h/2d)'/'. This corresponds 
to free fall over a distance equal to d. It may be noted that, with these initial conditions, 
the potential is continuous at the interface z = 0 at the moment of contact. 

The boundary-integral technique is a particularly suitable for a potential-flow free- 
surface problem of this type. A number of different boundary-integral formulations 
exist in the literature (e.g. see Blake, Taib & Doherty 1986, 1987; Dommermuth & Yue 
1987; OguZ & Prosperetti 1989; Kucera & Best 1992; Best 1993). Here we have used 
the one developed in our previous study on the impact of a liquid drop (Oguz & 
Prosperetti 1990) to which the reader is referred for details. 

We have explored the sensitivity of the results to the precise shape of the impacting 
liquid by replacing the lower part of the cylinder by a truncated cone of different 
lengths and apertures. These shape variations were found to only affect the initial 
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FIGURE 19. For caption see facing page. 
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FIGURE 20. Numerical (solid circles) and experimental (open circles) cavity pinch-off times for 
different container radii and fixed liquid level, h = 0.4 m, and suspension height, d = 0.15 m. The 
dashed line is the estimate (14). 

stages of the process, with a somewhat narrower cavity than that produced by the 
cylindrical shape. However, the subsequent development of the crater remained largely 
unchanged. This insensitivity to the initial shape had also been found in our earlier 
drop impact simulations (Oguz & Prosperetti 1993). 

6. Numerical simulations 
Provided the Froude number is high enough, the cavity shapes predicted by the 

numerical simulations are all very similar. We present a comparison with the 
experimental ones for the case shown in figure 3 in figure 18. (Here the photos have 
been taken in the course of a run different from that of figure 3 but for the same 
experimental conditions.) The dimensionless numbers have the values Fr = 13.9, 
We = 5670, R = 2.18 x lo4. While in the general evolution of the free surface the 
numerical simulation resembles the video images, it differs from them in significant 
details. In the first place, the numerical cavity is not as deep as the experimental one. 
Secondly, the jet seems to be ‘consumed’ earlier in the calculation than in the experiment 
as revealed from the fact that, after the bottom of the numerical cavity has become 
convex, the experimental one is still flat as if the jet were still above it (recall that these 
are edge-on views and one cannot see inside the cavity due to refraction). Thirdly, at 
the moment of pinch-off, the aperture of the conical crater above the cavity is smaller 
in the experiment than in the calculation. These discrepancies, which are most likely all 

FIGURE 19. Comparison between measured (left) and computed (right) cavity shapes for 
Fr = 9.25, h/ r  = 3.70, d / r  = 2.78, r = 54 mm. This case falls in regime (iii) of figure 10. 
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FIGURE 21. Comparison for the radii of the entrained bubble for the cases shown in figure 20. 

related to the insufficient depth reached by the numerical cavity, were found to a 
smaller or greater degree in all the comparisons between experiment and numerical 
simulations that we have carried out. Another example is given in figure 7 where the 
cavity penetration us. time is shown. 

A possible explanation is the following. It is well known that in the steady flow of 
a jet impinging on a free surface, the streamlines also maintain a substantially 
downward direction below the surface of the host liquid (see e.g. OSuz et al. 1992, 
figure 4). In other words, the incoming stream separates at the free surface, a fact that 
necessarily depends on the action of viscosity in the immediate neighbourhood of the 
point of entry. A similar process has been studied by Longuet-Higgins (1992, 1994) for 
the case of nonlinear capillary waves. The flow given by an inviscid irrotational model 
instead forces the fluid to spread radially along the free surface. In the case of present 
concern of the transient impact of a jet, one expects a short initial phase, in the course 
of which the irrotational-type flow prevails, which soon makes way for the separated 
flow regime. (As a proof of the initial potential-like flow one may cite the well-known 
fact that a drop of coloured liquid is reconstituted at the tip of the jet that issues from 
the bottom of the cavity that it produces, see Prosperetti and Oguz 1993.) This might 
happen because, first, as the crater becomes deeper, the angle to be turned by the 
potential streamlines becomes larger and larger and, secondly, because surface- 
generated vorticity is continually injected in the flow. After the flow separates, the shear 
stress between the entering liquid and the free surface in its neighbourhood may be 
sufficient to push the latter downward. This process might also be aided by the roll-up 
into vortices of the vortex sheet forming at the separation point, that also would have 
the right circulation to promote a downward motion of the liquid. 

These considerations might explain the greater depth reached by the cavity in the 
experiment. In truth, an observation against this scenario is the lack of small bubbles 
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FIGURE 22. Last computed free-surface configuration, just before the pinch-off of the cavity, for the 
theoretical points of figures 20 and 21. Here h/d = 813 and h / r  = 12.12, 10.81, 10.12,9.41,8.70,8.21, 
7.62, 5.46 and 4.37. The times indicated are in units of r / U .  

below the main cavity that one woiild expect to be entrained at the separation line. 
Unfortunately we are unable to clarify this point further at this time. 

It was mentioned earlier that the mechanics of the process is very different in the case 
of weak impacts. We show in figure 19 a comparison between experiment and 
calculation for the same case as the previous figure except that the water level is 
h = 0.20 m rather than 0.45, so that h / r  = 3.7. For this case, the value h2-3 marking the 
boundary between regimes (ii) and (iii) of figure 10 is 0.34 m, so that we are clearly in 
case (iii). The numerical simulation predicts the entrapment of a very small bubble. 
Experimentally, one sees a cloud of small bubbles with possibly a somewhat bigger 
cavity in the centre. Again, while the correspondence between experiment and theory 
is not perfect, the calculation does indicate a very different behaviour from the previous 
case. 

In order to illustrate further aspects of the numerical prediction, we compare in 
figure 20 experimental (open circles) and numerical cavity pinch-off times for different 
radii and fixed liquid depth in the container, h = 0.4 m, and suspension height, 
d = 0.15 m. The dashed line is the expression (14). The theoretical predictions are quite 
close to the data. In particular, it may be noted that the last experimental and 
numerical points fall on top of each other. Comparisons for the radii of the entrained 
bubble for the same cases are shown in figure 21. Although there is agreement in some 
cases, there also are substantial differences at the smaller r (since h is fixed here, 
increasing h/r  implies decreasing r). From figure 15 it is seen that, in the range where 
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the greatest discrepancies exist, there is a rather large scatter in the experimental data. 
The implication seems to be that r cannot be quite scaled out as we have done. We are 
unclear as to the cause of this phenomenon. 

Finally, in figure 22, we show the last computed free-surface configuration for the 
cases corresponding to the points shown in figures 20 and 21. Here h and d are fixed 
with h/d  = 8/3 and h / r  between 4.37 and 12.12. In the case of the two smallest values 
the pinch-off time is very close to the filling time of the cavity and the entrapped bubble 
does not fully form. Experimentally, this is probably the situation where a cloud of 
small bubbles is entrained. As h / r  increases, full cavities start being entrapped. For 
larger h / r  the bottom of the cavity becomes less and less rounded as the transition 
between regimes (iii) and (ii) is approached. The last case is one of incipient regime (ii). 

7. Conclusion 
We have studied the normal impact of a cylindrical liquid mass on a liquid surface. 

We have found that a large bubble is entrained for sufficiently large energies and aspect 
ratios. Simple physical arguments have provided considerable insight into the process, 
with better than order-of-magnitude agreement with observation. In particular, we 
have been able to estimate the width and depth of the cavity formed in the water, the 
volume of the entrapped bubble, and the time required for its pinch-off. Inviscid 
irrotational numerical simulations are also in broad agreement with the experiment, 
although some differences remain. 

A key point on which this work fails to shed light is the process by which the particles 
of the falling liquid penetrate under the surface. The separation phenomenon 
responsible for this effect appears to be crucial for a number of air-entraining flows but 
still remains little understood. 

This study has been supported by the Ocean Acoustics and Fluid Dynamics 
Programs of the Office of Naval Research. 
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